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Abstract 

Since the 1988 monograph "Distance Geometry and Molecular Conformation" by 
Crippen and Havel, there have been significant changes in the application of distance 
geometry to problems of chemical interest. This review attempts to outline what the 
current state of the art is, in both the underlying mathematical methods and chemical 
applications, and to indicate future developments. Rather than go into details concerning 
algorithms and theorems, the emphasis is on defining the kinds of problems we can 
solve or would like to, and then guiding the interested reader to the recent literature. 
Special emphasis is given to the problem of determining macromolecular conformation 
in solution by NMR, including energy functions, and dealing with conformational 
flexibility. 

1. Definitions 

1.l. DISTANCE GEOMETRY 

As far as pure mathematics is concerned, topology is the study of bijective and 
bicontinuous mappings; then distance geometry or metric topology is the subset of 
topology where the space involved has a "distance" defined and the mappings are also 
distance preserving. This has been studied by a long series of mathematicians, dating 
back at least to the mid-nineteenth century work of  Cayley, and continuing up to the 
present [1]. In more homely terms, classical geometry concentrates on points, lines, 
and angles, while distance geometry focuses on distances between points. The connection 
with chemistry is that if the points represent atoms, then the interatomic distances 
are often directly related to experimental results and important contributions to the 
energy of the system. Traditionally, computational chemistry has described molecular 
geometry in terms of either three-dimensional Cartesian coordinates or internal coordinates 
(bond lengths, vicinal bond angles, and dihedral angles), whichever parameterization 
was most convenient to the problem at hand. In distance geometry, we instead take 
the interatomic distances as the fundamental coordinates of  molecules, exploit their 
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close relationships to the experimental evidence and internal energies, and then 
worry about converting to atomic Cartesian coordinates only later. 

1.2. FUNDAMENTAL PROBLEM OF DISTANCE GEOMETRY 

The challenge in this business is that last little detail: how do we convert 
distances to Cartesian coordinates? A rigorous presentation of  all the factors involved 
takes up a substantial part of  our recent book [2]*, so here I will simply enumerate 
the important cases that arise in practical problems. The term embedding here refers 
to mapping some set of  constraints expressed primarily in terms of  distances among 
a set of  points or atoms into Cartesian coordinates for all points. 

(i) There may be no embedding possible. For example, if we denote the 
distance between points i and j by dij, then the triangle inequality 

dij < dik + dkj (1) 

must be obeyed for all triples of  points. If the constraints imply a violation of the 
triangle inequality for some triplet, then embedding fails for any dimension of  target 
space #~n. In general, there are several kinds of  conditions that the distances among 
all small subsets of  points must obey. Ideally, we would like to be able to trace back 
the failure to some small set of  mutually incompatible constraints, but except for 
violations of  the triangle inequality and the tetrangle inequality (a four-point relation), 
this remains an unsolved problem for two reasons. First, the failure to embed may 
be marginal, and the numerical methods used tend to spread the error over many 
subsets of  points, as in least-squares fitting. Second, there may be many different 
constraints or subsets of  constraints, each with their respective subsets of  points, 
such that removing any one of the subsets of constraints will permit embedding. 

(ii) There may be no solution in/R 3, but there is one in higher dimensions. 
Or more rarely, it may happen that one seeks an embedding in/R 3, but the result 
instead lies in a lower-dimensional subspace. Once again, there are multiple causes, 
and tracing back is generally difficult. 

(iii) There may be a unique solution, meaning of  course that the resulting 
coordinates are unique up to a rigid rotation and translation. This almost never 
happens, and in particular, for more than three points being embedded in R3, distance 
constraints alone are insufficient. In addition, there must be chirality constraints, 
which relate the relative handedness of quartets of  points in R 3 and can be generalized 
to any number of dimensions. As with distance constraints, there are certain relationships 
among specified chiralities and between chiralities and distance constraints that 
must be obeyed in order to embed. In chemical applications, this is usually not a 

*Affectionately referred to by some as "The Green Death". 
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major problem because the absolute orientation of the relatively few asymmetric 
centers (and the signs of dihedral angles) are generally known and mutually compatible. 

(iv) There may be a range of solutions. Experimental data are never exact, 
but more importantly, they are generally never plentiful enough to determine a 
unique molecular conformation. Suppose the constraints are enough to confine the 
molecule to some finite, connected region of its conformation space. It is a topic 
of current debate as to how best to explore this region in terms of sets of allowed 
Cartesian coordinates for the atoms. Should the sampling be uniform? What is 
uniform? Should the sampling concentrate on the extremes? See the discussion in 
the NMR section. There is no known convenient but accurate representation of the 
(probably nonconvex, high genus) allowed conformation space that affords easy 
production of atomic coordinates. 

(v) There are disjoint solution sets. This disturbing situation arises even in 
systems as simple as cyclohexane, typically with relatively tight sets of constraints. 
It implies that even if several different successful embeddings are known, they may 
not necessarily be at all similar to yet undiscovered embeddings, nor can the known 
structures be smoothly perturbed to reach them. 

Having seen the major possible outcomes of attempting to embed, we can 
work backwards to a relatively general statement of what has been referred to as 
the fundamental problem of  distance geometry. Suppose we have some upper 
and/or lower bounds on some of the interatomic distances 

0 < liy< dii< uq< 0% (2) 

where the bounds may be tight (lij g uij ), loose (lij << uij), or nonexistent (lij = 0 
and uij = oo). In addition, suppose there are some restrictions on the values of 
chirality Z that may be attained for some of the ordered quartets of atoms [a i, aj, a k, at], 

Zijkt E Sijkt c {-  1, + 1, 0}, (3) 

where the chirality values of - 1, + 1, and 0 correspond to the chemical ideas of S, 
R, and coplanar. Then the fundamental problem is to decide whether embedding is 
possible, given these constraints. If not, one would like to know which subsets of 
the constraints are mutually incompatible. A similar analysis would be desirable if 
embedding necessarily led to conformations in dimensions higher or lower than 3. 
If embedding in #?3 is possible, we want to characterize the allowed conformations 
as completely as possible in scientifically useful ways. In particular, it would be 
useful to have a representative of every major type of conformation, information 
about the extremes of the allowed conformation space, and a uniform sampling of 
all possibilities. 
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1.3. VARIATIONS ON THE PROBLEM 

The fundamental problem is very hard, both theoretically and in practice. 
Clearly, one approach is to redefine or restrict the problem so that it is easier to 
treat. Taken to extremes, one runs the risk of  solving a problem of no practical 
interest, but the optimists among us can at least learn from such studies something 
about the structure of the fundamental problem and attempt to generalize the methods 
that worked for restricted problems. 

Instead of  trying to embed /R 3, the fundamental problem becomes greatly 
simplified in one dimension. The idea of  chirality reduces to a question of  ordering 
along the real number line for pairs of  atoms. The algorithm by Dress and Havel [3] 
begins with any set of  distance equalities and inequalities and relative ordering 
information. From this, it enumerates all possible orderings of  the atoms along the 
line, i f  any, such that an embedding is possible. For each of  these orderings, it is 
easy to produce a satisfactory set of  atomic coordinates. The algorithm is certainly 
feasible for as many as ten atoms, but the computer time required goes up faster 
than a polynomial function of the problem size, as would be expected from results 
on just distance equality constraints [4]. In higher dimensions, the generalization 
of  ordering along the line is called a chirotope [2,5], and one can enumerate them, 
but they become much more numerous in two and three dimensions. 

Experimental distance information is never exact, and the usual treatment is 
to fit these constraints in a least-squares sense. In the original development of the 
EMBED algorithm, I had rejected this approach on the grounds that experiments 
usually give information concerning only a few of  the total number of  atom pairs, 
and even for these few, one usually knows only widely separated upper and lower 
distance bounds, rather than an estimated best distance value and standard deviation. 
Nonetheless, we shall see there are computational situations where we have a full 
matrix of  preferred distances, and a least-squares approach is useful. Suppose we 
are given a set of  trial distances tij for all pairs of  atoms, and we seek a set of  
coordinates c i ~ A m for i = 1 . . . . .  n such that the calculated distances d i j  "- II e i -  cj II 
agree with the trial distances in a least-squares sense. Another way to say this is 
that the objective is to minimize the square of  the Frobenius norm of  the difference 
between the trial and calculated distance matrices. Now, Glunt et al. [6] have 
devised an algorithm, called "modified alternating projections" or MAP, that solves 
this problem. For n points, the dimensionality of  the resulting coordinates can be 
as high as m = n -  1, but even for n >> 3, it often turns out that MAP produces 
coordinates such that n - 1 > m > 3. Furthermore, the answer is unique. Even though 
the coordinates are generally not in h~ 3, we shall see in the section on energy optimization 
that this technique is very useful. The same group have subsequently shown that 
proceeding from the MAP result in [e rn down to ~3 destroys the uniqueness of  the 
solution, but the multiple solutions can be characterized as local minima of  a 
function, and these local minima all lie on a sphere [7]. This is a remarkable result 
that promises interesting future developments. 
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Suppose the only constraints are exact distances between some pairs of points. 
There are two reasons this problem is so attractive: engineers are very concerned 
about the rigidity of a structure built up of bars having fixed lengths, and the 
rigidity of such a "bar and joint framework" is almost always independent of the 
values given to the distance constraints. This means we can draw on a large body 
of work aimed toward deciding whether a given set of distance equality constraints 
determines a unique molecular conformation, and the tests are relatively rapid 
searches for certain graph properties [8,2]. Here, the graph has nodes identified 
with the atoms and an edge between two nodes whenever the corresponding atoms 
have a given fixed distance. Probably one of most significant theoretical results is 
that finding embeddings for such graphs is strongly NP-hard [4], and hence the 
more general fundamental problem is at least this bad. Characterization of the 
motions of a flexible bar and joint framework is less well developed, but Hendrickson 
[9] has shown that flexings almost always move a joint (= atom) in a closed loop 
diffeomorphic to a circle. This is certainly familiar in chemistry in that molecular 
conformations change by spinning around single bonds, or cyclic molecules undergo 
pseudorotation. Hendrickson also exhibits a whole class of frameworks that are 
locally rigid but have multiple ways they can be constructed in space. These are 
examples of the fact that local rigidity does not imply that the embedding is globally 
unique. This corresponds to the unhappy case of disjoint regions of  conformation 
space being the solutions to even such a restricted version of the distance geometry 
problem. As a matter of  practical application, one can construct algorithms for 
embedding using distance equality constraints (see below), but almost the only 
experimental source for such constraints are the relatively stiff bond lengths and 
vicinal bond angles. The additional equalities required to give the molecule any sort 
of  distinctive conformation must come from choosing values for other atom pairs 
from within experimentally determined ranges, or from choosing values that would 
lead to low-energy conformations. The other problem is that most of the useful 
results in this area have the caveat "almost all", meaning that there are special 
values of distance constraints where the theorems may fail. Molecules viewed at 
atomic resolution have many special symmetries, triples of collinear atoms, quadruples 
of  coplanar atoms, etc. that would have zero probability of occurring if interatomic 
distances were chosen at random. If the points are instead whole groups of  atoms 
and the constraints are applied to macromolecules built out of  such groups, this sort 
of trouble is unlikely. 

2. Methods 

2.1. NAIVE APPROACHES 

Brutality works. It is now feasible to attack the distance geometry problem 
by means that were unthinkable only a few years ago, due to advances in computer 
power and availability. For example, one can adjust dihedral angles by interactive 
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computer graphics until the geometric constraints are met or the investigator loses 
patience, whichever comes first. This is not a recommendable approach for a thorough 
search over several degrees of  freedom, but it is routinely used as a way to escape 
from a set of  unsatisfied constraints by visually inspecting the unsatisfactory 
conformation and making a large, concerted manipulation by hand, so that residual 
violations can be subsequently removed automatically by smooth, continuous 
perturbations. The automatic methods amount to defining a penalty function and 
minimizing it with some standard general program for unconstrained minimization. 
The penalty function consists typically of a sum of terms, one for each constraint, 
each term constructed to be equal to zero only if its constraint is satisfied and 
having monotonically increasing value as the constraint is violated by a greater and 
greater margin. If the only constraints are upper bounds on distances, one can 
construct a penalty function with only a single minimum value region, and a 
minimization algorithm can always find the solution. The minute distance equalities 
or lower bounds are introduced, the penalty function has a nonconvex feasible 
region and multiple minima, the majority of which have penalty function values 
greater than zero. The question becomes how to leave these infeasible local minima 
without always resorting to human intervention. 

If the problem is small enough, picking random starting points for the 
minimization may suffice. If not, there are innumerable, more-or-less global search 
algorithms to try. Of these, the most popular one among the NMR community is 
constrained molecular dynamics. Starting at some initial conformation that has 
some relatively minor constraint violations, one carries out a molecular dynamics 
simulation on the molecule where the potential is the weighted sum of the usual 
empirical energy function and the penalty function. Thermal motions send the 
molecule over small potential barriers, and the molecule tends toward a conformation 
that better satisfies the geometric constraints and has a relatively good internal 
energy. The drawback is that if the starting point is not very good, molecular 
dynamics is a hopelessly expensive way to seek solutions. The search is better than 
local minimization, but still not very broad. If at the end of  a search, there are still 
substantial constraint violations, it may be ambiguous whether the constraints themselves 
are mutually contradictory, or whether they correspond to conformations with very 
high energy. 

Greater potential barriers can be surmounted and wider regions explored by 
running molecular dynamics at high temperature. Then, in order to converge on 
conformations having low potential values, i.e. that satisfy the geometric constraints, 
it is necessary to gradually lower the temperature. This simulated annealing procedure 
is guaranteed to converge on the global minimum with probability one if the cooling 
is carded out "slowly enough" [10]. Reasonable cooling schedules can be found 
empirically such that starting coordinates approximately satisfying the constraints 
can be refined to much better solutions [11,12]. In fact, it is possible to reach a 
solution from arbitrary random starting coordinates [13], but it is much more efficient 
to begin with coordinates from the EMBED algorithm, and most determinations of 
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protein conformation from NMR data that employ simulated annealing are done 
that way. 

All of these penalty function methods suffer from concentrating on exhibiting 
an embedding if one can be found, but in case of  failure, the outcome is not clear. 
Perhaps a longer search would find a solution. Perhaps the remaining small violations 
can be completely erased by extending the search, or perhaps they represent a 
genuine incompatibility. Even in the case of large residual violations, it is generally 
difficult to identify which subset of the constraints is mutually incompatible, because 
the violations tend to spread among all the terms. 

2.2. EXACT DISTANCE CONSTRAINTS 

Given a sparse set of  exact distances between pairs of atoms, the computer 
program ABBIE by Hendrickson [9] finds an embedding in ~3. It first analyzes 
the corresponding constraints graph to detect rigid subgraphs which are either 
small enough to embed immediately by minimizing the penalty function, or must 
be broken into smaller rigid subgraphs. Then, the embedded subgraphs or their 
mirror images are rejoined as rigid groups until finally the whole molecule 
is built up. The procedure seems to depend on there being enough fixed distances 
to uniquely determine the conformation, although of course most distances could 
be unspecified. Chirality constraints are not employed except for realizing that 
either an embedded subgraph or its mirror image must be rejoined to other parts 
of the molecule in order to satisfy all distance constraints. Unfortunately, most 
chemical applications do not have this type of constraint set, but at least the approach 
can in principle detect subsets of incompatible constraints, due to its divide-and- 
conquer strategy. 

Hadwiger and Fox [14] have been developing a related means of building up 
a set of  coordinates for a molecule, starting with small subsets of  atoms having 
many distance equality constraints among them. Although they have not yet presented 
an algorithm, the idea seems to be a matter of piecing together small rigid groups 
or their mirror images, possibly branching on the two alternatives at each step, so 
as to broadly search the set of allowed conformations. Sometimes there will be 
given chiral constraints that dictate which of the two joinings are allowed, but 
usually both alternatives will be permissible. If there are insufficient constraints to 
consolidate two pieces, sufficient intergroup distance values could be chosen at 
random. In the process, there would be some provision to detect constraint incom- 
patibilities, such as triangle inequality violations. The attractive feature is the relatively 
comprehensive search of  conformation space associated with exploring the tree of  
altemative joinings of  groups, but it remains to be seen how well the approach 
compares to EMBED. In particular, many branches of  the search tree could be dead 
ends when there are severe steric constraints, i.e. important lower bounds on interatomic 
distances. 
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2.3. EMBED ALGORITHM 

The standard algorithm for solving the full distance geometry problem is 
called EMBED, and it has been described in abundant detail [2]. For the purposes 
of  this discussion, it suffices to note its distinguishing features. At the outset, the 
emphasis is on the distance inequality bounds, and much effort goes into using the 
sparse set of constraints to raise the lower bounds and lower the upper bounds for 
interatomic distances that have not been specified at all. Subsequently, sets of  trial 
distances are selected by some random process from the respective allowed ranges. 
From here on, all distances are treated on an equal footing, regardless of whether 
they stem from some equality constraint or were selected from a large range. The 
advantage is that there is no favoritism of one part of the molecule over another, 
and errors do not propagate as they might in a procedure that built up the molecules 
from some small subset of atoms. Each set of trial distances is converted into a trial 
metric matrix, where the ijth element is the scalar product of the vectors from the 
center of mass to the i th and jth atoms. Trial coordinates can be easily calculated 
from the three largest eigenvalues and corresponding eigenvectors of the metric 
matrix. As we have already discussed, the problem addressed by Hayden and coworkers 
seeks the trial coordinates whose calculated distance matrix best agrees with the 
trial distances in the Frobenius norm, whereas here the trial coordinates correspond 
to a calculated metric matrix that best agrees with the trial metric matrix in the 
spectral sense. The trial coordinates may agree with the trial distances in some 
broad sense that makes subsequent refinement easy, but generally~ to the eye they 
bear little resemblance to the desired molecule. Finally, the trial coordinates are 
used as the starting point in a minimization of a penalty function based on the given 
constraints. Only the penalty function includes any information about desired chiralities. 
The resulting refined coordinates either agree with the input constraints very closely 
or the structure is rejected. For difficult sets of constraints, the attrition rate can be 
appreciable, depending on the refinement techniques used. Conformation space is 
explored by producing a series of sets of refined coordinates derived from different 
random trial distances, the justification being that the interaction of the constraints 
can be extremely complicated, so that some sort of directed exploration or summary 
of  the allowed conformations is not yet practical. (The complete analysis of the con- 
formation space of  cyclohexane seems to be the most complicated example to date.) 

EMBED has been programmed several times by different people, incorporating 
different features that affect its convenience of use and efficiency, as explained in a 
recent review [15]. It is most readily available from QCPE (Quantum Chemistry Program 
Exchange) as Havers DISGEO program (written in PASCAL, tailored for NMR studies 
of protein conformation) and Blaney's DGEOM (written in FORTRAN for more general 
molecular distance geometry problems). Commercial sources include Smellie's 
CONSTRICTOR (Oxford Molecular, Ltd.) and Hare's DSPACE (Hare Research). 

The most advanced implementation of the general EMBED scheme is the DG- 
II program, written in C by Tim Havel. In addition to the usual bound smoothing with 
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the triangle inequality, it offers optional tetrangle bound smoothing. For typical 
NMR data on proteins, this is not important, but for small molecules having some 
large lower bounds on distances, the contraction of allowed distance ranges can be 
significant [16]. DG-II employs the best known method of  selecting random trial 
distances: the atoms are randomly ordered, and then the trial distances are chosen 
from the (permuted) matrix of ranges using metrization, an algorithm that contracts 
the ranges of yet unspecified distances such that the resulting sets of trial distances 
are consistent with the triangle inequality [2]. As usual, most of the computational 
effort goes into refining the trial coordinates for each random structure generated. In 
order to facilitate the process, DG-II first starts with coordinates #t 4, derived as usual 
from the trial distances, and then reduces the constraint violations by simulated 
annealing, while compressing the structure into/R 3. At this point, most of  the residual 
violations are minor deformations of local structure, such as non-planar benzene 
rings, and further improvement by simulated annealing or local minimization with 
respect to Cartesian coordinates is slow. Consequently, the next step for problems 
with exact local distance constraints is to fit the current atomic coordinates to a 
"regularized" conformation having exactly the desired bond lengths, bond angles, 
planarities, etc. The fitting procedure also takes into account any dihedral angle 
constraints. From here, the refinement proceeds by minimizing the penalty function 
with respect to dihedral angles, starting at the regularized conformation. 

Clearly, DG-II has several adjustable parameters that affect performance, such 
as a simulated annealing schedule, convergence criteria at various steps, etc. Since 
the convergence versus failure to converge for a given trial structure to a satisfactory 
refined structure can depend on variations in parameters at the level of machine 
accuracy, the performance of the algorithm can only be described on an average case 
basis. Let the test molecule be pancreatic trypsin inhibitor (BPTI), a small, stable 
protein having 58 residues, an accurately determined crystal structure, and a structure 
in aqueous solution studied by NMR. The test set of constraints consists of standard 
bond lengths, bond angles, Van der Waals radii, and residue chiralities, plus 500 
distance constraints of the type one would derive from NMR NOE measurements, 
but in this case taken from the crystal structure atomic coordinates. That way, there 
is no question about geometric infeasibility of the constraint set. Even though the 
molecule contains around 700 atoms, producing each refined structure took only 
about four hours on a Sun Sparcstation 1, most of that time being spent in the 
simulated annealing stage. Only about 20% of the trial coordinate sets failed to 
converge, due to some incorrect chain crossing that would require a large, concerted 
conformational change to correct. The other 80% reached a maximum distance violation 
of 0.3/~, about five times better than earlier computer programs. The breadth o f  
sampling in this relatively constrained example also increased in that there was a 
1.5 Arms  deviation among backbone conformations, compared to only I /~  previously. 

Selecting trial distances has been done in the past by a variety of  random and 
not-so-random processes, leading to concern that EMBED's sampling of the allowed 
conformations is biased [17,18]. The most difficult part of  this question is deciding 
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what unbiased sampling should look like. For rigid valence geometry, the assumption 
underlying standard polymer statistics is that uniform sampling means uniform sampling 
of dihedral angles. For poly-L-alanine subject to only local geometric constraints 
(Flory 0 conditions), one can calculate the mean-square end-to-end distance directly 
from standard polymer theory. Given the same constraints, DG-II produces a random 
sampling of conformers having the same mean-square end-to-end distance, as well 
as a fairly uniform dihedral angle distribution [19]. 

2.4. ENERGY OI:rFIMIZATION 

If EMBED or any other algorithm is able to generate a (large) sample of 
conformers consistent with a given list of geometric constraints, most chemists would 
be more interested in those having the lowest energies, as calculated by some standard 
empirical molecular mechanics potential. Clearly, this is the overwhelming trend in 
the determination of macromolecular conformation by NMR, where almost invariably, 
structures produced by EMBED are subjected to a round of molecular dynamics. The 
task, therefore, amounts to optimizing a nonlinear function of the atomic coordinates 
subject to a collection of nonlinear constraints. Before diving into applications, it is 
worthwhile to stand back and enumerate the three possible scenarios. 

(1) The constraints may have no feasible region, so the issue of energy minimization 
does not even arise. 

(2) There are one or more disjoint, probably nonconvex, feasible regions of  various 
dimensionality as far as the constraints are concerned. Within the interior of 
one of these regions, there may be one or more local energy minima. I will 
refer to these as unconstrained minima. 

(3) A local energy minimum may lie outside a feasible region such that there arise 
one or more points along the boundary of the region that are constrained minima. 
The Kuhn-Tucker  optimality conditions apply here [2]; in particular, the energy 
gradient is not zero, and there are nonzero Lagrange multipliers associated 
with at least some of the constraints, each corresponding to the force that the 
constraint exerts on the solution to keep it from leaving the feasible region and 
proceeding toward the local minimum outside the region. 

A survey of recent papers on the determination of  solution conformation of 
macromolecules by NMR clearly shows that the preferred method is to use EMBED 
to find conformers in agreement with the geometric constraints derived from experiment, 
and then to improve their energy by molecular dynamics. If the starting structure is 
near enough to a deep unconstrained minimum (case 2, above), molecular dynamics 
will be attracted to it, possibly cross small intervening energy barriers to reach it, and 
the geometric constraints will still be obeyed. Energy minimization is simple in that 
an algorithm will almost always eventually converge to some nearby local minimum 
and stay there, but molecular dynamics is always somewhat uncertain, because a 
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longer simulation may produce a rare but important conformational change in the 
unpredictable future. Typical experience seems to be that the molecular dynamics 
trajectory moves out of the feasible region relatively soon and is unlikely to return. 
The standard remedy is to add the penalty function to the potential energy function, 
balanced by some weighting factor. For a large weight on the penalty terms, this produces 
an approximation to the constrained minimum (case 3, above) while still skipping 
over minor local minima. Resorting to such "constrained molecular dynamics" is a 
disturbing admission that the empirical energy function and/or the formulation of the 
simulation (e.g. temperature, pressure, and solvation) do not agree with experiment. 
I am not aware of any study resolving this discrepancy that so many researchers gloss 
over! Perhaps the NMR experiments are being overinterpreted (see NMR section); 
perhaps the energy functions need to be adjusted; perhaps the treatment of the macro- 
molecules's environment, such as solvation, is so inadequate that an otherwise correct 
set of energy parameters leads the simulation astray; or perhaps the trajectory would 
eventually lead back to a feasible region, but the simulation was halted prematurely. 

Although the initial stages of the EMBED algorithm deal strictly with constraints 
on interatomic distances, the refinement stage can be adapted to treat many different 
problems, among them being the geometrically constrained optimization of an energy 
function. Augmented Lagrangian functions [20] provide a general, numerically stable 
method for locating constrained local minima of any objective function, such as an 
empirical energy function. The results depend, of course, on the starting point in such 
situations, but one simply uses EMBED to produce a series of different trial coordinate 
sets as a random sampling of starting points. Using an augmented Lagrangian produces 
a more accurate constrained minimum than minimizing (or running molecular dynamics 
with) the weighted sum of the objective and penalty functions. Furthermore, it produces 
the Lagrange multipliers for the various constraints at the solution, thus revealing 
which constraints oppose the energy function in case 3, or which constraints are in 
conflict with each other in case 1. So far, this approach has not been tried with a 
standard energy function as the objective, or with a typical set of constraints for a 
small protein. 

Instead of adding on energetic considerations at only the last stage of EMBED, 
energy embedding attempts to include information about the energy function at earlier 
stages. The basic approach [21-23] as reviewed in ref. [2] is that one begins in a 
high-dimensional space, where there are actually fewer local energy minima, relatively 
easily locates an energy minima, and then proceeds toward #~3 in such a way as to 
raise the energy as little as possible. Recent studies have shed new light on the start 
of the procedure in the high-dimensional space. If there are strong intrinsic torsional 
terms in the energy function, such as for rotating about a peptide bond, then there 
will be local minima corresponding to the different stable states of these torsions 
even in high dimensions [24]. Even if all the terms are pairwise interatomic interactions 
with a unique energetically optimal separation implied for each pair of atoms, this 
set of  trial distances is not in general embeddable in any dimension. For n atoms, 
one can either start at an arbitrary conformation in/R n- I and minimize the energy, 
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or one can use the MAP algorithm of Hayden's group [6] to find an embeddable 
least-squares approximation to the trial distances. Either way, the final conform- 
ation lies in an m-dimensional subspace, where m = n/3, and m is the same by either 
procedure [25]. Then there are various ways to proceed toward a three-dimensional 
structure, such as driving the trial distance matrix toward embeddability [26,27] or 
smoothly following the path from the high-dimensional starting point toward a three- 
dimensional conformation as defined by a set of  differential equations that keep the 
energy minimal while reducing a continuous dimensionality parameter [25]. However, 
we find that it is much more efficient and effective to successively reduce the 
dimension one unit by setting the high-dimensional analogues of dihedral angles to 
different combinations of cis and trans values, keeping the energetically more favorable 
alternatives [25]. This rotational energy embedding procedure has located remarkably 
low-energy minima in test cases of about 40 interacting particles much more quickly 
than other global search methods can, but it does not necessarily find the global 
minimum. 

3. Determinat ion of conformat ion by NMR 

3.1. CURRENT METHODS 

The EMBED algorithm can be used to solve a wide variety of geometric 
problems arising in drug design [28,29] and the general determination of molecular 
conformation from a variety of experimental and theoretical information [30]. However, 
it is most frequently employed in the determination of the conformation of small 
proteins and oligonucleic acids in solution. In fact, it occupies a position analogous 
to that of direct Fourier methods in X-ray crystallography. The efficiency of  EMBED, 
or any other algorithm, depends in part on the special kinds and quantity of  input 
available from present-day NMR. In the case of a typical small protein, the vast 
majority of  constraints are lower bounds on the distance between almost all pairs of  
atoms, due to their Van der Waals radii. This information is nonspecific, in that it 
does not restrict the allowed set of conlbrmations to any particular region, but since 
globular proteins are quite closely packed, a large fraction of the total conformation 
space is eliminated. Next come the holonomic constraints that are known  a priori 
from the crystal structures of related small molecules: standard bond lengths, vicinal 
bond angles, chirality of  asymmetric centers, planarity of conjugated rings, etc. These 
constraints at least restrict the molecule to have at most some finite diameter, but 
otherwise the allowed region still consists of a complicated subspace of the space of 
all atomic Cartesian coordinates. This subspace corresponds to different choices of 
the dihedral angles, and there is still a large portion of the Cartesian coordinate space 
that is pervaded by it, in that for every set of coordinates corresponding to only mild 
violation of the holonomic constraints, there is a point in the subspace nearby. In 
other words, a protein with unspecified dihedral angles is still pretty floppy. The next 
most plentiful category of constraints at last come from the NMR experiments, either 
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as some restrictions on a few of the dihedral angles or mostly as short upper bounds 
on distances between hydrogen atoms which are separated by relatively few covalent 
bonds. Usually, these constraints are denoted as short-range NOEs. Without going 
into the physics of NMR spectroscopy (see refs. [31-33]),  suffice it to say that one 
can detect some, but not all, instances where two hydrogen atoms are within about 
5/~ of each other by observing a "nuclear Overhauser effect" (NOE). NOEs can be 
observed whether they are short range (the atoms are linked by a chain of only a few 
bonds) or long range (distant in amino acid sequence but not through space), but most 
NOEs are short range. For various technical reasons, NOEs are difficult to quantitate, 
so the most precise interpretations that are justifiable tend to break the NOEs into 
two or three classes, such as dij < 3 A versus 3 < dij < 5/~. In particular, failure to 
observe an NOE between a given pair of atoms does not imply dij > 5 ~ .  Even with 
these seemingly loose kinds of constraints, the relatively plentiful short-range NOEs, 
combined with the holonomic constraints, are often enough to strongly restrict the 
path of the polypeptide chain over a several-residue segment. Analogous to the idea 
of persistence length in polymer theory, however, the chain direction at the end of 
longer segments tends to lose any correlation with the chain direction at the beginning, 
if you think about generating an ensemble of segments given only these constraints. 
In other words, moderately precise determination of the local chain geometry does 
not greatly restrict the overall protein folding possibilities. Finally, there are generally 
enough long-range NOEs to force the large-scale folding pattern, even if the polypeptide 
is treated locally as a freely jointed chain. In combination with all the foregoing 
classes of constraints, a small protein typically has its backbone conformation determined 
to within an average of 1 or 2 /~, where the tightly packed secondary structural 
elements in the core are more tightly constrained, and exterior loops and chain 
termini either actually have more freedom to move, or at least the experimental 
evidence does not greatly restrict their allowed positions. Typically, one calculates 
a large sampling of conformations using EMBED, and all successful refined coordinate 
sets cluster around each other to this sort of precision. The nagging worry is that there 
may be another distant, disconnected region of conformation space that also satisfies 
the constraints, but the random sampling happened to miss it. For instance, it is 
possible to satisfy a large set of simulated NOEs, disulfide bridges, hydrogen bonds, 
and holonomic constraints for BPTI by giving the polypeptide chain an overall 
conformation that is the mirror image of the crystal structure, and then making small 
adjustments to the left-handed a-helices, etc. to compensate for the still correct L- 
amino acids [34]! 

As I have already explained, there are a number of different ways to solve the 
distance geometry problem for such sets of constraints. The EMBED algorithm tends 
to have a high rate of  success, even though it does not really take into account the 
preponderance of local constraints over the relatively few long-range constraints, but 
rather treats all interatomic distances equally. The main alternatives are Braun and 
Go's DISMAN algorithm [35], which does exploit the heavy local constraints, and 
simulated annealing and constrained molecular dynamics. There is a tendency in the 
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field to use "distance geometry" as a buzz-word to denote any computer program 
designed to find conformations subject to constraints on distances. If we use that term 
for these alternative approaches, even though they never deal with the matrix of 
interatomic distances as the primary variables for describing conformation, then we 
will have to call all molecular energy minimization and molecular dynamics programs 
"distance geometry", too. 

In the early stages of EMBED, it is essential to interpret the NMR experiments 
in terms of  bounds on interatomic distances. However, we have already seen several 
examples of how the final refinement stage is much more flexible. Several laboratories 
are implementing back-calculation refinement procedures, where the trial atomic 
coordinates in #~3 are varied so that the NMR spectra calculated from them agree 
optimally with the original spectra [36,37]. This is clearly a sensible thing to do, 
although the complexity of the computer programs and the cost of running them are 
increased. An essential part of this line of inquiry will be to detect and avoid local 
optima in the refinement where the calculated conformation fails to agree with the 
NMR within experimental accuracy. 

So far, I have discussed only NMR studies on macromolecules in solution. In 
solid-state NMR, the sample is not necessarily crystalline, but there is at least uniaxial 
alignment of  the molecules with respect to the external magnetic field. Then one can 
experimentally determine the angle between various covalent bond vectors and the 
magnetic field vector, although there may be as much as a fourfold ambiguity in the 
value. Brenneman and Cross [38] have shown how to combine this information with 
holonomic constraints to determine possible values of dihedral angles in polypeptides. 
So far, they have only shown how this works on simulated data sets, but there is no 
reason to suspect it will have trouble with real experimental data. Internally, the 
method seems rather complicated, largely because the ambiguity in the experimental 
angle values forces one into a combinatorial search. Issues of insufficient, inaccurate, 
and contradictory data still need to be explored. 

Central to Brenneman and Cross' approach is the metric matrix, where the 
entries are the scalar products between pairs of  vectors attached to various parts of  
the molecule. Embeddability in/R 3 requires that the metric matrix as a whole, or any 
submatrix of  it, have rank no more than 3, which is precisely how EMBED converts 
the trial distances to trial coordinates. This is very similar to linearized embedding 
[39,40], where the metric matrix, rather than the distance matrix, plays a central role. 
In a molecule with fixed local geometry (fixed bond lengths, bond angles, planar 
rings, asymmetric centers, but free dihedral angles about rotatable bonds), one can 
view the molecule as a collection of mutually rigid groups of  atoms linked together 
by the rotatable bonds. Instead of describing its conformation in terms of  torsion 
angles, the linearized representation sets up a local coordinate system within each 
rigid group, so that the position of any atom is given by a linear polynomial with 
fixed scalar coefficients independent of  conformation, where the variables are the 
unit vectors that are the axes of all the local coordinate systems. A particular conformation 
is specified by choosing certain relative orientations for all the unit vectors, subject 
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tO the embeddability condition that the rank of the metric matrix formed by these unit 
vectors be 3 (or less). Producing the linearized representation for a molecule is a 
moderately complicated process, but then all the local geometry is automatically built 
in, there are relatively few conformational variables, and the embeddability condition 
is simple. Distance constraints can also be expressed as bounds on linear combinations 
of metric matrix elements. Initial experience with the method on challenging test 
cases involving real experimental data [40] indicate that the method works at least 
as well as EMBED on these problems, and it may eventually work better on some 
classes of problems. 

3.2. FUTURE ISSUES 

.The big issues in the future of distance geometry, particularly in connection 
with NMR, hinge on defining exactly what we want out of it. The first question is: 
do we want to know what a certain collection of experiments has told us about a 
molecule's conformation, or do we want to find the theoretically preferred conformer(s) 
out of all those allowed by the experimental evidence? Many arguments would be 
eliminated if people would simply confess which of these two goals they are aiming 
for. Agreed, the second goal has a lot of precedent in science, for example, in the 
refinement programs used in solving macromolecular crystal structures. Nevertheless, 
I have several objections. 

(1) I would like to know the full range of conformers (if any) compatible with a 
given body of experimental data. If the range is broad, either the real molecule 
moves through the range, or one can suggest further experiments aimed at 
determining the conformation more precisely. If the range is narrow, and it 
disagrees with my favorite potential energy function, I know I have to fix the 
potential function. 

(2) Apparently current empirical potential energy functions do not agree well with 
the experimentally determined structures, when these are narrowly determined. 
Therefore, using energy to select preferred conformers in the widely determined 
case seems to be a dubious practice. 

(3) Proclaiming an energetically optimal and geometrically feasible conformer to 
be "the predicted/determined" structure is a misrepresentation at best. It is not 
a prediction or model building purely from low-level information, such as 
covalent structure and an energy function. Neither is it a definitive experimental 
determination because, especially with some computational methods, it is difficult 
to say which features came from the experimental data and which came from 
theory. 

The other main issue I see is that of conformational flexibility. Although globular 
proteins can have rather well-defined conformation, in that one can solve protein X- 
ray crystal structures to high accuracy using essentially a static model, clearly there 
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are important dynamic features. NMR has been rightly heralded as a method capable 
of exploring such flexibility in some detail. So far, however, distance geometry 
methods have been applied to static models of protein structure, where all observed 
NOEs, etc., correspond to a set of geometric constraints that must be satisfied 
simultaneously and at all times. This leads to a sometimes distressing interaction 
between the computational chemist, who finds that mathematically the given constraints 
are mutually inconsistent, and the NMR spectroscopist, who insists his assignments 
are correct and the NOEs are reproducibly observed. If instead of calculating the 
feasibility or infeasibility of inequality constraints, one can turn to an optimal (but 
perhaps not complete) agreement between experiment and calculated static model. 
This leads to a problem well known in X-ray crystallography, where the optimal 
static model substantially disagrees with all the conformations available to the real 
molecule. For example, suppose the real molecule has a freely rotatable bond such 
that some group of atoms can lie anywhere on a possibly large circle with equal 
probability, when averaged over time and space in the macroscopic sample. The 
least-squares fit to this places the group at the center of the circle, far from any real 
position. In NMR, the key fact is that an NOE may be observed between two atoms 
undergoing motions rapid on the NMR time scale, such that they are close only a 
substantial fraction of the time. 

So far, there is no very elegant theoretical description of large-scale, constrained 
molecular motions. On the practical front, Kim and Prestegard [41] have produced 
a greatly improved fit to the constraints for a small protein by using a two-state 
model. In general, one could imagine trying this when the given full set of constraints 
is geometrically infeasible, but usually there would be multiple ways to divide the 
constraints into two overlapping subsets such that each is feasible. Alternatively, 
Torda et al. [42] have set up a pseudopotential for a molecular dynamics simulation, 
such that two atoms involved in an NOE are drawn together only if their distance 
has been too great over a substantial fraction of the recent past in the simulation. This 
allows the molecule to switch back and forth between one or more alternative states, 
satisfying only various subsets of the NOE constraints at any one instant, but satisfying 
them all over the time average, even if the total set of constraints is geometrically 
infeasible. The advantage is that the simulation automatically takes care of deciding 
which alternative states are necessary. The possible disadvantages are that it is not 
known whether this method will always yield a solution when the data can be 
explained in terms of a small number of alternative states; and secondly, the method 
may be able to fit any collection of constraints whatsoever. The third problem is that 
the result of a successful calculation is an entire molecular dynamics trajectory, 
which may be difficult to summarize. This leads back to the need for a convenient 
representation for large, concerted, molecular motions. Clearly, applied distance geometry 
is a lively field with many problems outstanding, and in need of all the clever ideas 
anyone can contribute. 
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